An Embedding Theorem for Abelian Categories
نویسندگان
چکیده
منابع مشابه
An embedding theorem for Hilbert categories
We axiomatically define (pre-)Hilbert categories. The axioms resemble those for monoidal Abelian categories with the addition of an involutive functor. We then prove embedding theorems: any locally small pre-Hilbert category whose monoidal unit is a simple generator embeds (weakly) monoidally into the category of pre-Hilbert spaces and adjointable maps, preserving adjoint morphisms and all fini...
متن کاملBarr’s Embedding Theorem for Enriched Categories
We generalize Barr’s embedding theorem for regular categories to the context of enriched categories.
متن کاملGorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملAbelian Categories
Abelian categories are the most general category in which one can develop homological algebra. The idea and the name “abelian category” were first introduced by MacLane [Mac50], but the modern axiomitisation and first substantial applications were given by Grothendieck in his famous Tohoku paper [Gro57]. This paper was motivated by the needs of algebraic geometry, where the category of sheaves ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1205